Home / RESEARCH / News RESEARCH

The STING Phase-Separator Suppresses Innate Immune Signaling

Apr.09,2021

Prof. Zhengfan Jiang published a paper in NCB.


Biomolecular condensates (biocondensates) formed via liquid–liquid phase-separation of soluble proteins have been studied extensively. However, neither the phase-separation of endoplasmic reticulum (ER) transmembrane protein nor a biocondensate with organized membranous structures has been reported. Here, we have discovered a spherical ER membranous biocondensate with puzzle-like structures caused by condensation of the ER-resident stimulator of interferon genes (STING) in DNA virus-infected or 2′3′-cGAMP (cyclic GMP-AMP)-treated cells, which required STING transmembrane domains, an intrinsically disordered region (IDR) and a dimerization domain. Intracellular 2′3′-cGAMP concentrations determined STING translocation or condensation. STING biocondensates constrained STING and TBK1 (TANK binding protein 1) to prevent innate immunity from overactivation, presumably acting like a ‘STING-TBK1-cGAMP sponge’. Cells expressing STING-E336G/E337G showed notably enhanced innate immune responses due to impaired STING condensation after viral infection at later stages. Microtubule inhibitors impeded the STING condensate gel-like transition and augmented type I-interferon production in DNA virus-infected cells. This membranous biocondensate was therefore named the STING phase-separator.


Original link: https://dx.doi.org/10.1038/s41556-021-00659-0